Aalto University School of Science

Department of Mathematics and Systems Analysis

Differential and Integral Calculus

Online exam 22.2.2021 at 13.00–17.00 (GMT+2)

The best five (5) answers are counted. You can solve all six problems, but only the best five are counted. Each problem is worth 6 points, so that the maximum is 30 points.

Please remember to show the intermediate steps of your calculations!

1. a) Find the sum of the series

$$\sum_{k=0}^{\infty} \frac{4^{k+1}}{5^{k-1}}.$$

b) For which values of x is the sum

$$\sum_{k=1}^{\infty} \frac{k}{7^k} x^k$$

convergent?

2. a) Find an approximate value of $\cos(\sin(0.1))$ by first replacing sine with its 3rd degree Maclaurin polynomial $P_3(x)$ and then replacing cosine with its 2nd degree polynomial $P_2(x)$.

Note: Maclaurin polynomial = Taylor polynomial with respect to $x_0 = 0$. b) Show (e.g. L'Hospital's rule) that the limit

$$\lim_{x \to 0} \frac{e^{ax} - 1 + x^2}{\ln(1 + 2ax)}$$

does not depend on the value of the parameter $a \neq 0$.

- 3. Let $f: \mathbf{R} \to \mathbf{R}, f(x) = 3x + 4x^5$.
 - a) Show that the function f is strictly increasing.

b) The function f is also surjective (onto), and therefore it has an inverse. Calculate $(f^{-1})'(7)$.

Hint: The inverse cannot be presented in terms of elementary functions, but the value $f^{-1}(7)$ can be found by trial and error, or by solving a suitable equation with a calculator or mathematical software.

4. Calculate the improper integral

$$\int_0^\infty e^{-\sqrt{x}} \, dx$$

by first substituting $x = t^2$.

5. a) The value y(t) of a certain pyramid scheme at time t satisfies the differential equation

 $y' = ky, \ k > 0 \text{ constant},$

and the initial condition y(0) = 100 (euros). At time t = 2 (years) the value has increased to $y(2) = 10^8$ (euros). Determine the coefficient k using this information.

b) Solve the differential equation y' = 1 - y with the initial condition y(0) = 3.

6. Find the general solution of the differential equation $y'' + 6y' + 5y = 145 \sin(2x)$.