

Energy Storage Technologies

Prof. Annukka Santasalo-Aarnio

Energy Conversion Research Group Department of Mechanical Engineering Aalto University

Learning outcomes

- What are the most commonly used Energy Storage systems
- Introduction to operating principles for ES systems
- Few highlights of the energy system definition

Learning by Discovery

Prepare a mind map for Energy Storage Technologies

Example mind map

Mechanical Storage

Pumped Hydro power

- Efficiency 70-87 %
- Quite low cost (case by case)
- Demands a proper location (hight or reservour)

Compressed Air Energy Storage (CAES)

- Efficiency 75-80 %
- Low cost (2-3 times lower than pumped hydro)
- Requires a cavern (or old mine..)
- Utilized still a fuel (currently fossil) to heat up the compressed air before turbine

Flywheel Energy Storage

- Electrical energy into kinetic energy
- Efficiency up to 90 %
- Charging -> motor provides more speed
- Discharge -> energy from flywheel drives the generator

Electrical/ Electrochemical Storage

Different type of batteries – why?

Primary batteries = Discharged only ones Secondary batteries = Can be charged and discharged various times

Lithium-ion battery (LIB) - operation

Aalto University School of Engineering

M.K. Shobana / Journal of Alloys and Compounds 802 (2019) 477

The main LIB chemistries - Structures

Layered structures with movable Li ions...

A. Manthiram, An Outlook on Lithium Ion Battery Technology – ASC Central Science DOI: 10.1021/acscentsci.7b00288

Different voltages and chemistries Lithium ion battery (LIB)

Positive electrodeDischarge -> $CoO_2 + Li^+ + e^- <-> LiCoO_2$ $E^0 \sim 3.8 V$ <- Charge</td>

Negative electrode

$$LiC_6 + <-> C_6 + Li^+ + e^ E^0 \sim 0.1 V$$

Full reaction

$$CoO_2 + LiC_6 \iff LiCoO_2 + C_6 \qquad E^0 \approx 3.7 V$$

The main LIB chemistries - Properties

http://www.bcg.com/documents/file36615.pdf, 18 pages.

Vanadium flow battery

P. Peljo et al. Green chemistry 18 (2016) 1785

Aalto University School of Engineering

Reactions

Positive electrode $VO^{2+} + H_2O \rightleftharpoons VO_2^+ + 2 H^+ + e^-$

Negative electrode: $V^{3+} + e^- \rightleftharpoons V^{2+}$

Requirements

Large space for the compartments Material issues...

M.A.A. Mohd Abdah et al. / Materials and Design 186 (2020) 108199

School of Engineering

Supercapacitors - EDLC

Capacitor discharged

Capacitor charged

Random distribution of ions

Inner Helmholtz plane (polarized solvent molecules) Mirror image of charge distribution of ions in opposite polarity

- Graphene sheets
- Can accept and deliver charge much faster than batteries
- Often Combined with batteries

Chemical Storage

Electrolysers – Power to Hydrogen

Hydrogenics

PEM electrolyser

Also Power to X Larger chemical compounds (traffic fuels)

Hydrogen and Fuel Cell Archives

Alkaline electrolyser

Figure 11. Example of an SOEC stack www.scielo.br Solid Oxide Electrolyser

Aalto University School of Engineering

19

PEM water electrolyser

https://en.wikipedia.org/wiki/Polymer_electrolyte_memb rane_electrolysis

Anode $2 H_2 0 \rightarrow 4 H^+ + 4 e^- + 0_2$

Cathode $4 H^+ + 4 e^- \rightarrow 2 H_2$

 $2 \operatorname{H}_2 \operatorname{O} \rightarrow 2 \operatorname{H}_2 + \operatorname{O}_2$

Electrolysers – Alkaline

Electrolysers – Alkaline

Woikoski

- A mature technology
- Reliable and safe, lifetimes 20-30 years
- High production capacities: 500– 760-Nm³/h
- Recent advances:
- Improved efficiency, reduction in operating costs
- Increased operating current densities, reduction in investment costs

Electrolysers – Alkaline vs. PEM

Electrolysers – Solid Oxide Electrolysis

Fuel Cells

Thermal material storage

KL1

KL1 onko tämä "thermal storage material"? Knuutila Lotta, 24/08/2020

Different TES material systems

Aalto University School of Engineering

Takahiro Nomura, et al. Technology of Latent Heat Storage for High-Temperature Application: A Review, ISIJ International, Vol. 50 (2010), pp. 1229–1239

Thermochemical Energy Storage reactants

Yu, N., et al. Sorption thermal storage for solar energy. *Progress in Energy and Combustion Science*. (2013) DOI: 10.1016/j.pecs.2013.05.004

What did you learn?

Lecture Journal

What did you learn today that was new to you?

Do you want to reflect on your mind map?

