Module C2: Durability Supportive materials

AAE-E3120 Circular Economy for Energy Storage

Prof. Annukka Santasalo-Aarnio

Learning outcomes

- Recognize the material choice effect to degradation mechanisms of the system
 - Separator/Electrolytes (in electrochemical systems)
 - Support materials
- Develop new design for recycling approach for energy storage application and justify with scientific argumentation
 - High durability (how to ensure with material selection?)

Degradation Separators and Electrolytes

Separate the electrode reactions

- Prevents reactant mixing -> parasitic reactions
- Prevent unwanted diffusion of products at electrodes
- Separator degradation -> cell failure... (partial or full)

www.ftene.com

High temperature applications Solid Ceramic Electrolyte

Ceramic materials

Temperature fluctuations

- thermal suitability with the other materials
- contamination
- dissolution of parts into electrodes

Aalto University School of Engineering

Polymer membrane electrolyte (PEM) Case example: Nafion membrane

- Proton conductive membrane material
- Used in many electrochemical devices
- Electrolysers
- Fuel Cells
- Flow batteries
- Required liquid water
 - (limits operating temperature, 90°C)

Aalto University School of Engineering

Polymer membrane electrolyte (PEM) Molecule Crossover

- Small, neutral molecules
 - Alcohols (DMFC)
 - SO₂ (SO₂ depolarised electrolyser)
- Prevention:
 - Different electrolyte material
 - Finding reactant that have charge (neg.)
 Formic acid (PEM FC)
 - Protective layer to prevent molecules to enter the electrolyte

A. Santasalo-Aarnio et al. J. Solid State Electrochem (2016) DOI: 10.1007/s10008-016-3169-8

Polymer membrane electrolyte (PEM) Durability

 Nafion has high chemical durability however, does not last well dry conditions

Case – Dry conditions

- Accelerated membrane test
- Step 1: The MEA was operated in OCV mode for 30 s under 100 % Humidity (R.H);
- Step 2: The MEA was operated in discharge mode at 0.6 V for 150 s under R.H. 100%;
- Step 3: The MEA was operated in discharge mode at 0.6 V for 150 s under R.H. 0% (bypass).

T.-C. Jao, Int. J. Hydr. Ene 37 (2012) 13623-13630.

Polymer membrane electrolyte (PEM) Durability

Aalto University School of Engineering

T.-C. Jao, Int. J. Hydr. Ene 37 (2012) 13623-13630.

Accelerated tests in durability

Lecture Journal

We saw accelerated test also in the case of active materials (C1 video). Do you think that with electrolytes, they produce more valuable results?

Degradation Supportive materials

Supportive

materials

High temperature applications Metallic interconnects

Stacks -> Bipolar plates

Electrolysers + fuel cells

- For high voltage -> stack of cells in series
- Bipolar plates
 - Stainless steel
 - Carbon

Stacks -> Bipolar plates

• Carbon used in fuel cells

- a support material for catalyst (video C1)
- Carbon cloth used for gas diffusion layer material in PEMFCs
- Bipolar plates in multicell stacks (light)

Stacks -> Bipolar plates

• Carbon used in Fuel Cells

- a support material for catalyst
- Carbon cloth used for gas diffusion layer material in PEMFCs
- Bipolar plates in multicell stacks (light)

Carbon corrosion

$$C + 2H_2O \rightarrow CO_2 + 4H^+ + 4e^-$$

Replacing reactions in electrochemical systems

Possible electrochemical reactions at PEMFC anode

Fuel Cell
$$H_2 \rightarrow 2 H^+ + 2 e^ E^0 = 0 V^{(1)}$$

Carbon
$$C+ 2H_2O \rightarrow CO_2 + 4H^+ + 4e^ E^0 = 0.5 V^{2}$$

Water splitting $2 H_2 O \rightarrow 2 H^+ + 2 e^- + O_2$ $E^0 = 1.23 V^{(1)}$

R.C. Weast, CRC handbook, 56th Edition (1975)
 C.A. Reiser *et al. Electrochemical and Solid-State Letters*, 8 (2005) A273-A276

Case: PEM FC in a Car

Case: PEM FC in a Car

Lecture Journal

What happend in the cell?

Case: PEM FC in a Car

Case 2: Bipolar plates - electrolyser SO₂ depolarized electrolyser (SDE)

• Bipolar Plates: Stainless steel 904L plates with 100 nm Au coating (catalyst for anode + cathode reactions)

Aalto University School of Engineering A. Santasalo-Aarnio et al. J. Power Sources 306 (2016)1-7.

Case 2: Bipolar plates - SDE Corrosion conditions

Corrosion rate (log mm/year)

Stainless steel 316L Marine grade Stainless steel 904L NiCrMoCu 25/20/5/1

A. Santasalo-Aarnio et al. J. Power Sources 306 (2016)1-7.

Case 2: Bipolar plates - SDE Corrosion in SDE

- Stainless steel 904L plates with 100 nm Au coating
- Catholyte 15 wt% H₂SO₄
- Anolyte: 15 wt% H_2SO_4 Saturated SO_2
- Stack of 5 cells
- 25 °C
- Constant current experiments 11 A

Case 2: Bipolar plates

Corrosion in SDE

- Stainless steel 904L plates with 100 nm Au coating
- Catholyte 15 wt% H₂SO₄
- Anolyte: 15 wt% H₂SO₄ Saturated SO₂
- Stack of 5 cells
- 25 °C
- Constant current experiments 11 A

Lecture Journal

What happend in the cell?

Case 2: Bipolar plates - SDE Corrosion in SDE

- Stainless steel 904L plates with 100 nm Au coating
- Plate at high potential, dissolution of steel under the coating

Aalto University School of Engineering A. Santasalo-Aarnio et al. J. Power Sources 306 (2016)1-7.

What is valued in active material performance?

used for longer time (as recycling always energy intensive and costly).

Aalto University School of Engineering

Take a home message

Supportive material degradation will eventually cause partial or full failure of the system.
They can also cause hazard for reactant/product release in the atmosphere.
Even though not directly related with ACTIVITY, supportive material durability is important to keep in mind when planning the design.

