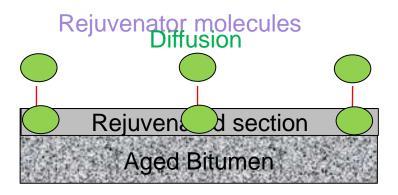


Analysis of bitumen rejuvenation using FTIR-ATR

By;

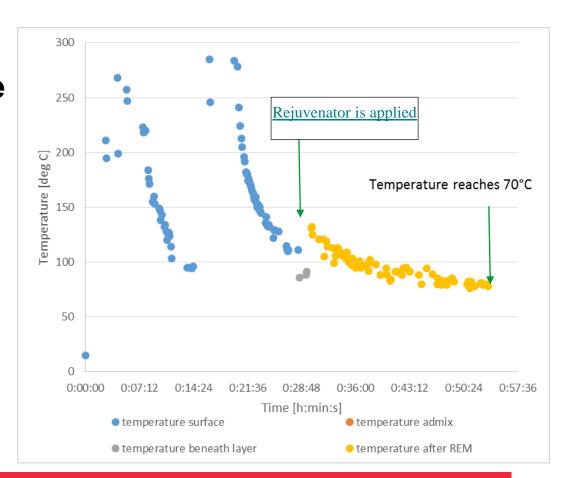
Fawad Ahmed (MSc. student)

Contents


- Background
- Research area/problems
- Research aim
- Technique used
- Materials used
- Calculations
- Results
- Conclusion
- Suggestions
- Q&A

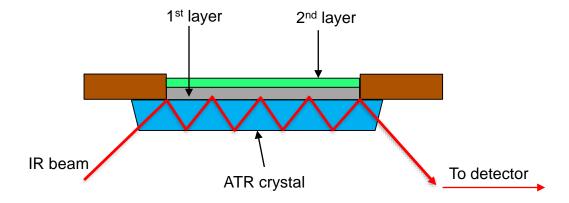
Background

 Rejuvenation depends on the phenomena of movement of rejuvenator molecules into bitumen called as <u>diffusion</u>


- Factors affecting diffusion are:
 - Temperature
 - Molecular mobility
 - Individual viscosities
 - Compatibility of materials

Research area/problems

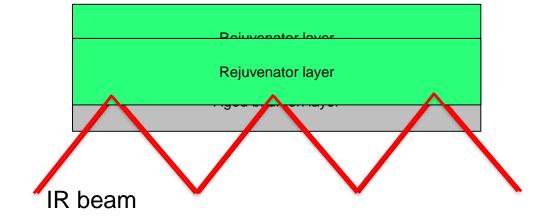
- Is the rejuvenation proceeding during the REMIX process
- Literature studies 120°C →inplant heating
- Low temperature rejuvenation
 → diffusion in piles
- REM specific field results
 - Bitumen and rejuvenator remains at above 70°C for approx. 30 mins


Research aims

- This research was focused to examine the influence of following factors on rejuvenation process:
 - 1. Binders softness
 - 2. Rejuvenator type and viscosity
 - 3. Temperature
 - 4. Time

Technique used

- Fourier transform infrared spectroscopy (FTIR) along with attenuated total reflectance (ATR)
- How FTIR-ATR is applicable in this case?
 - Principle of FTIR-ATR is;


Technique used

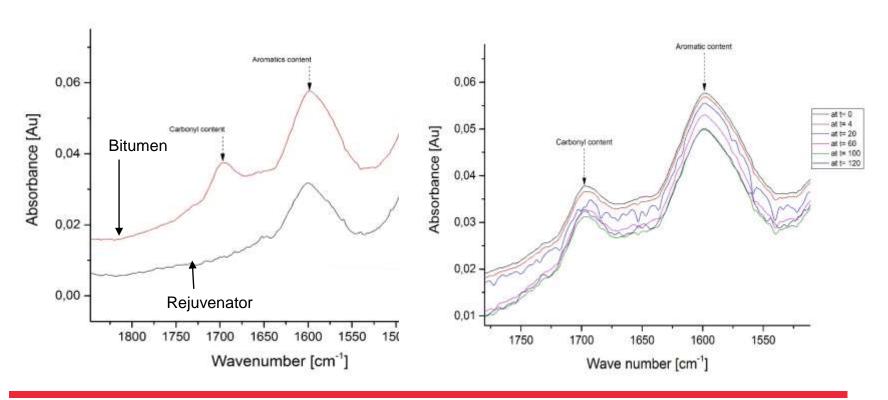
Due to ageing;

- Certain functional groups appeared in bitumen spectra
 - · Carbonyl, aromatics and sulfoxide
- These can be identified by FTIR-ATR spectrum

Upon rejuvenation;

- Rejuvenator molecules diffuse into bitumen
- Concentration of functional groups altered
- Due to change in concentration, absorbance also changes
- This change in absorbance appears in FTIR-ATR spectra
- This change in spectrum indicates rejuvenation

Note: In case of oil based rejuvenator, different ranges were analyzed



Technique used

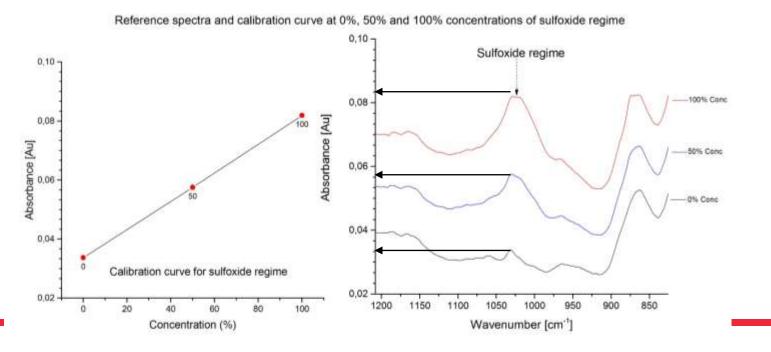
Change in absorbance of carbonyl and aromatic regimes

Before rejuvenation

After rejuvenation

Materials

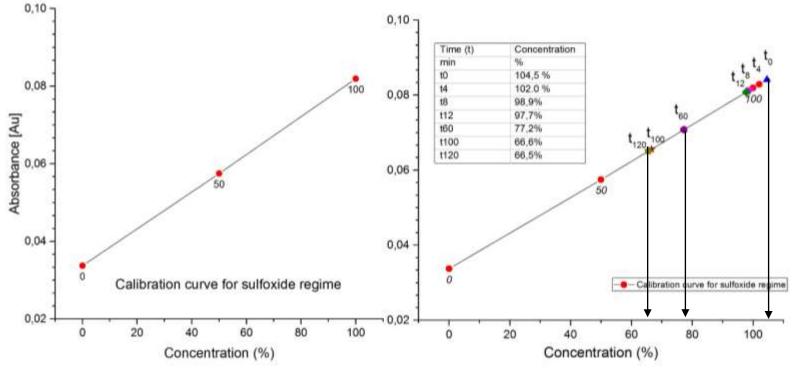
- Aged bitumen; 1R (Area 1) and 70/100
- Rejuvenator; R1 and R4 (softer grade bitumen)
 R2 and R3 (Bio and oil based rejuvenators)


Measuring temperatures; 40°C,,60°C, and 90°C

		Bitumen used	n Viscosities of Rejuvenators applied (Pa)			
Pen (dmm)	S.P (°C)		R1 650/900	R2	R3	R4 V1500
22	65	1R	6,196	0,021	0,033	1,209
76	48,8 /	70/100	6,196	0,021	0,033	1,209

Calculations

- For referencing:
 - Calibration curves of known concentrations, 0%, 50% and 100%
 Example:



Calculations

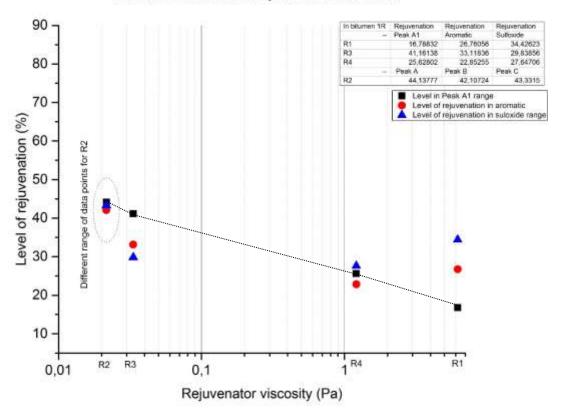
- Calculated concentrations at 90°C
 - According to Beer-Lambert law; A ∝ c
 - Higher the concentration, higher is the absorbance

Calculated concentration of Sulfoxide regime at different time intervals at 90°C

- Concentrations of marker peaks were calculated at 40°C, 60°C and 90°C
- Bitumen 1R and 70/100 were compared against all rejuvenators, R1, R2, R3 and R4
- In case of R2, concentration at different peaks were calculated

 Average level of rejuvenation in bitumen 1R (Area 1) rejuvenated by 650/900

Time span	Level of rejuvenation at 40°C	Level of rejuvenation at 60°C	Level of rejuvenation at 90°C
min	%	%	%
0	0	0	0
20	-	0,36	8
40	-	1,25	13
60	-	0,5	18,7
80	-	1	27,8
100	-	1	27,1
120	-	2,2	27,0


Average level of rejuvenation in bitumen 1R (Area 1) rejuvenated by V1500

Time span	Level of rejuvenation at 40°C	Level of rejuvenation at 60°C	Level of rejuvenation at 90°C
min	%	%	%
0	0	0	0
20	-	0,35	6,8
40	-	0,17	9,4
60	-	0,01	13,2
80	-	0,1	15,4
100	-	0,9	20,6
120	-	0,1	24,7

Influence of viscosity on rejuvenation of 1R

Influence of viscosities of rejuvenator in bitumen 1R

Influence of Bitumen softening

Bitumen	Softening point	Level of rejuvenation with R1(650/900)			
	°C	40°C	60°C	90°C	
70/100	48,8	-	3.3%	39%	
1R	65	-	2%	26%	

Conclusion

- Rejuvenation was found in all cases to proceed at higher temperature (90°C)
- Rejuvenation occurs above softening point of bitumen
- Softer rejuvenator was found more effective in rejuvenation

Suggestions

- If we want to allow for maximum rejuvenation within the 30 minutes after REMIX works
 - Choose an appropriate temperature above the Softening Point of old bitumen
 - Increasing the level of rejuvenation may be achieved by a choice of a softer rejuvenator

Questions

