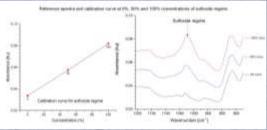
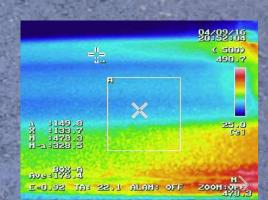
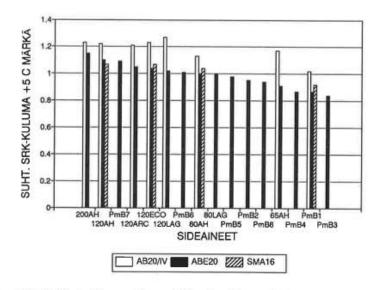

REMIX - Jatkuu


Michalina Makowska, M.Sc. Kalle Aaroma, M.Sc. Prof. Terhi Pellinen, PhD


24.11.2016

Outline

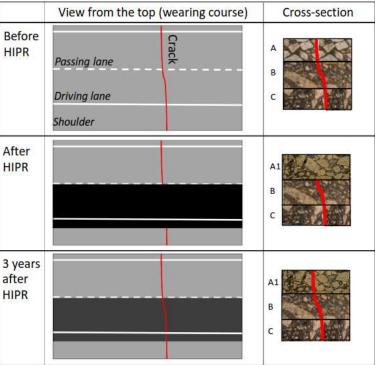
- 1. The parameter of a good performance
- 2. How to achieve that parameter rules of rejuvenation
- 3. Risks associated with REMIX process and rejuvenation
- 4. The most common problems observed on the Test sites
- 5. Fawad presents how the rejuvenation depends from bitumen, rejuvenator, temperature and time
- 6. \rightarrow The studies on thermal conductivity



Glover-Rowe parameter as a performance criteria

ASTO: The type of gradation is crucial, but bitumen rheology is important too

Kuva 16/3.4. Sideaineiden merkitys asfaltin suhteellisessa kulumisessa +5 °C märkä, (SRK).



Taulukko 25/3.3. Pyöräurituslaitteessa tutkitut erikoispäällystekoetien massat. Kiviaines on Koskenkylä, paitsi referenssissä Teisko *.

Koeosuus	Massatyyppi	Sideaine	Deformaatio (mm)
1'	AB 20/IV	B-120 AH	12.2
2	AB 20/IV	B-120 LAG	12.8
3	AB 20/IV	PmB 1	5.1
4	ABE 20	B-80 LAG	8.6
5	ABE 20	PmB 1	4.1
6	SMA 16 saksal. käyrä	PmB 1	3.0
7	SMA 16	PmB 1	3.9
8	SMA 16	8-80 + gilsoniitti	2.1

The performance criteria development for bitumen based on resistance to reflective cracking and ravelling

Different origin influences the path (G*) and blending also alters the path

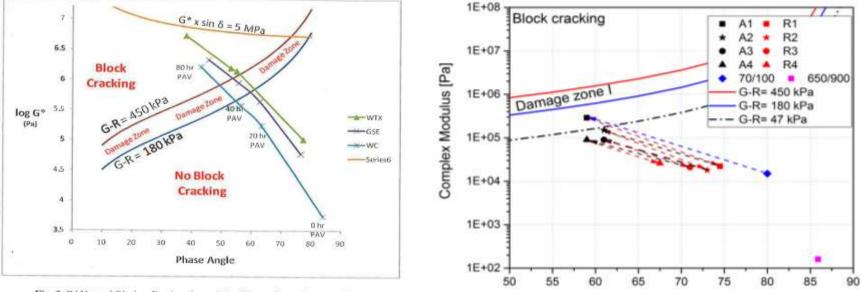


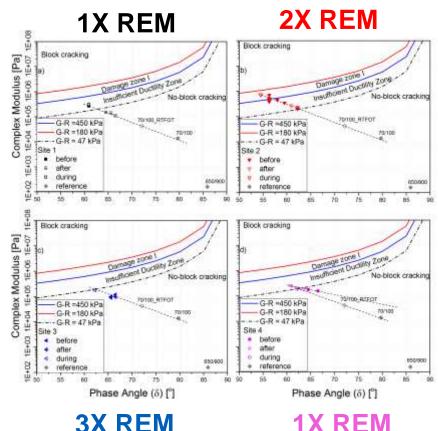
Fig. 2. PAV-aged Binders Passing through the Glover-Rowe Damage Zone

Phase Angle (δ) [°]

G*→ Pen correlation may not hold exactly for different origin binder and multiply recycled material

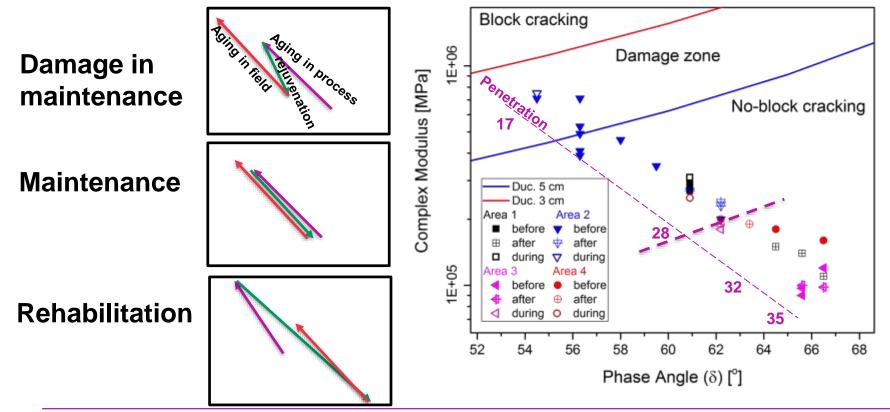
 Aalto University
 King, G., Anderson, M., Hanson, D., & Blankenship, P. (2012). Using Black Space Diagrams to Predict Age-Induced Cracking. In A. Scarpas, N. Kringos, I. Al-Qadi, & A.

 School of Engineering
 Loizos (Ed.), 7th RILEM International Conference on Cracking in Pavements (pp. 453-463). Delft: RILEM Bookseries, Springer.
 24.3.2017


The areas for which G-R parameter after construction was inside Insufficient Ductility Zone region had transverse cracking and ravelling within a year

G-R parameter:

$$G'/(\frac{\eta'}{G'}) = G x ((\cos \delta)^2 / \sin \delta) x \omega$$


G* and δ at T = 15 °C and ω = 0,005 rad/s

Paper submitted and accepted for EATA 2017

Aalto University School of Engineering

How can we use the damage zone and Insufficient Ductility Zone in the future?

Corresponds rather well with Penetration Damage Zone – Pen 22 Insufficient Ductility Zone – Pen 28

24.3.2017 8

G-R parameter corresponds well with Penetration (at the moment)

Damage Zone – Pen 22

- Below this value: ravelling, cracking, pot holes are observed

Insufficient Ductility Zone – Pen 28

- Below this value: ravelling, cracking, pot holes - developing within a year!

Good performance – Pen 32

<u>Potential to use it as a varranty requirement.</u> <u>Suggested evaluation with existing data about failed</u> <u>construction sites for comparison</u>

Before more data is gathered suggestion is to follow the normal bitumen QC

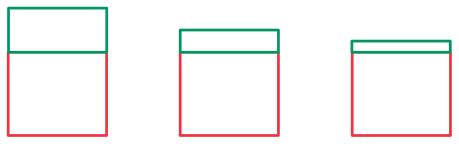
Retained Penetration requirement – <u>the suggested minimum</u>

Penetration of 70 dmm after RTFOT 46% → Pen 32 dmm

Penetration of bitumen $50/70 - 50\% \rightarrow$ Pen 25 dmm ??

Penetration of bitumen 160/200 – 39% → Pen 59 dmm

\rightarrow Requires a knowledge of the grade of the original bitumen



Rules of rejuvenation

The use of the soft rejuvenators is limited due to previous research

 In the past the researchers used a known concentration per weight of bitumen, e.g 5% rejuvenator or fixed amount of rejuvenator per m2 or 100 kg, e.g. 200 g/m2

- We postulate that the aim should be to compare mechanical response at the equiviscous state of bitumen

But soft bitumens are hard to measure Penetration and oil rejuvenators do not have G* or Pen

The Penetration based equation would limit the rejuvenators to only bitumen based materials

The viscosity based blending equation was used to determine the ratios of bitumen and rejuvenator to obtain equiviscous mixture

 $(a + b) * lg(lg(visc_{mix})) = a * lg(lg(visc_1)) + b * lg(lg(visc_2))$

How to measure the viscosity at 25°C for aged bitumen?

Because the phase angle for tested materials was different than 90°, meaning partially elastic, we used a conversion equation from Pellinen et al. (2007)

Bitumens →DSR→ G*→ Rejuvenators→DSR→ viscosity

where:

G

(U)

= apparent Newtonian viscosity, in Pas;

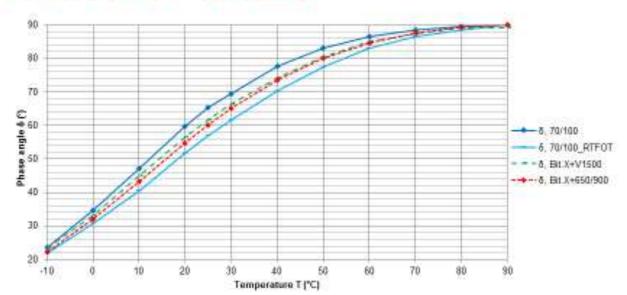
- = binder complex shear modulus, in Pa;
- = angular frequency, in radians/sec;

 $\eta = \frac{|G^*|}{\left(\frac{1}{1-1}\right)^2}$

 δ = phase angle in radians;

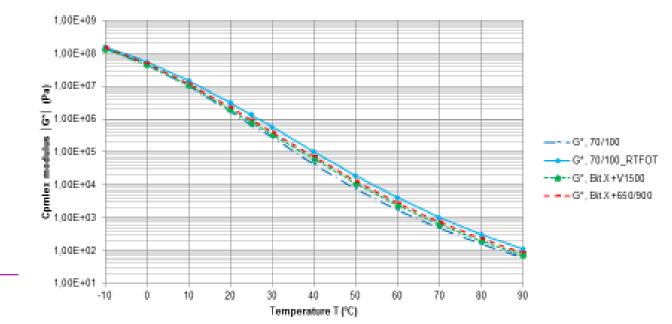
 a_{0} , a_{1} , a_{2} = fitting parameters

(for combined dataset of unmodified and modified binders $a_0 = 3.639216$, $a_1 = 0.131373$, $a_2 = -0.000901$).


Test drive in the laboratory

Bitumen	Rejuven ator amount [%]	Penetr ation measur ed [dmm]	Penetr ation predict ed from G*	G* at 1,78 Hz and 25°C [Pa]	Phase angle [°]	G*/sind=1 kPa	
B50	-	53		n/a	n/a		
B50+B800	7,12	61 🛌	56	9,73*10 ⁻⁵	60,19	69	
					_Equiv	iscous at	25 deg C
B50+V1500	4,68	61	64	-8,09*10 ⁻⁵	61,69	67	
B50+R1	2,11	72				overflow	
B50+R2	2,44	65 🔶			impa	enator = k ct	лд

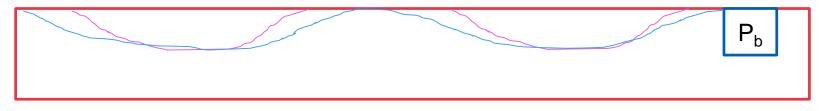
Phase angle at temperatures is very close for both blends, with being closer to the original by using V1500


δ vs T (at f=1,78Hz)

Again by using the V1500 it seems that the curve is beneath the curve of blend with 650/900

G* vs T (at f=1,78Hz)

The creep is not an issue when the amount of rejuvenator is controlled


Area 4 +	Max. density	Air voids (SSD) [target 2%]	Creep [%]
No rejuvenator	2,439	1,7	0,511
V1500	2,430	1,4	0,440
R1	2,435	1,3	0,230
R2	2,434	1,7	0,537

The complex issue of controlling the viscosity of bitumen during the hot in-place recycling

When RAP + admixture + rejuvenator \rightarrow in plant \rightarrow simple

Parameters : bitumen content (RAP and admixture), Penetration of RAP and virgin and rejuvenator

When RAP(surface) + admixture + rejuvenator \rightarrow in-place \rightarrow complex

Parameters: bitumen content (RAP and admixture), Penetration of RAP and virgin and rejuvenator, volume of rut, density of the pavement, density of the admixture

Calculations for one Penetration of bitumen in aged pavement + 650/900

		volume of					Density of										Target	
		layer to be					old	bitumen		maximum		minimum	Type of	Rejuvenator			70/100	
	Pen of	remixed/dept					pavement	type in		density of	Admixtur	admixture to	rejuvena	amount		Result	RTFOT	
2	old	h of remix	rut depth	volume of rut	effective mass	Pbold	[maximum]	admixture	Pb ad	admix	e amount	refil the rut	tor	[kg/M2]	calc pen	B800	(40Pen)	Target name
3	16	0,04	16	0,008	76,8	5,8	2400	70/100	5,4	2400	159,1016	19,2	650/899	0,25	40,46	0,943502	0,942588	70/100 RTFOT
4	16	0,04	16	0,008	76,8	6	2400	70/100	5,4	2400	165,7341	19,2	650/900	0,25	40,45	0,94346	0,942588	70/100 RTFOT
5	16	0,04	16	0,008	76,8	6,2	2400	70/100	5,4	2400	172,3636	19,2	650/900	0,25	40,45	0,943421	0,942588	70/100 RTFOT
6	16	0,04	16	0,008	76,8	6,4	2400	70/100	5,4	2400	178,9842	19,2	650/900	0,25	40,44	0,943386	0,942588	70/100 RTFOT
7	16	0,04	16	0,008	76,8	6,6	2400	70/100	5,4	2400	185,5968	19,2	650/900	0,25	40,44	0,943354	0,942588	70/100 RTFOT
8	16	0,04	16	0,008	76,8	6,8	2400	70/100	5,4	2400	192,2025		650/900	0,25	40,44	0,943325	0,942588	70/100 RTFOT
9	16	0,04	16	0,008	76,8	7	2400	70/100	5,4	2400	198,8017	19,2	650/900	0,25	40,43	0,943298	0,942588	70/100 RTFOT
10	16	0,04	25	0,0125	66	5,8	2400	70/100	5,4	2400	141,6161	30	650/899	0,25	41,18	0,942395	0,942588	70/100 RTFOT
11	16	0,04	25	0,0125	66	6	2400	70/100	5,4	2400	144,802	30	650/900	0,25	40,98	0,942717	0,942588	70/100 RTFOT
12	16	0,04	25	0,0125	66	6,2	2400	70/100	5,4	2400	145,8932	30	650/900	0,25	40,64	0,943293	0,942588	70/100 RTFOT
13	16	0,04	25	0,0125	66	6,4	2400	70/100	5,4	2400	150,8581	30	650/900	0,25	40,58	0,943354	0,942588	70/100 RTFOT
14	16	0,04	25	0,0125	66	6,6	2400	70/100	5,4	2400	155,7945	30	650/900	0,25	40,52	0,943414	0,942588	70/100 RTFOT
15	16	0,04	25	0,0125	66	6,8	2400	70/100	5,4	2400	160,552	30	650/900	0,25	40,46	0,943492	0,942588	70/100 RTFOT
16	16	0,04	25	0,0125	66	7	2400	70/100	5,4	2400	172,844	30	650/900	0,25	40,85	0,942713	0,942588	70/100 RTFOT
17	16	0,04	16	0,008	76,8	5,8	2400	70/100	5,8	2400	148,1274	1.2	650/899	0,25	40,46	0,943502	0,942588	70/100 RTFOT
18	16	0,04	16	0,008	76,8	6	4 2400	70/100	5,8	2400	154,3067	19,2	650/900	0,25	40,45	0,943459	0,942588	70/100 RTFOT
19	16	0,04	16	0,008	76,8	6,2	2400	70/100	5,8	2400	160,4769	19,2	650/900	0,25	40,45	0,943421	0,942588	70/100 RTFOT
20	16	0,04	16	0,008	76,8	6,4	2400	70/100	5,8	2400	166,6389	9,2	50/900	0,25	40,44	0,943386	0,942588	70/100 RTFOT
21	16	0,04	16	0,008	76,8	6,6	2400	70/100	5,8	2400	172,7937	19,2	630/900	0,25	40,44	0,943355	0,942588	70/100 RTFOT
22	16	0,04	16	0,008	76,8	6,8	-	70/100	5,8		178,9419		650/900	0,25		0,943326		70/100 RTFOT
23	16	0,04	16	0,008	76,8	7		70/100	5,8		185,0843		650/900	0,25	-	0,943299		70/100 RTFOT
							1			1		· · ·	1					

Less fresh is needed for deeper rut. 24.3.2017

The density determines "how much bitumen at 4 cm", the rut "how much is not"

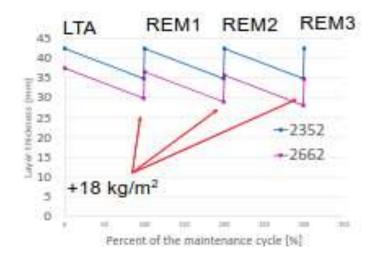
The effect of Penetration, rejuvenator, admixture – when same final target

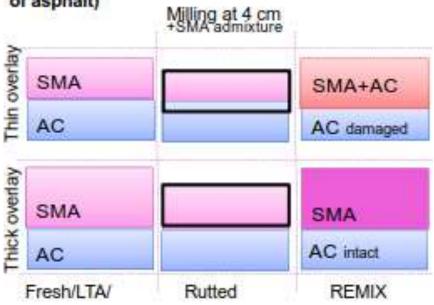
			volume of layer									Admixture	minimum	1	Rejuvena			
			to be			effective mass		Density of old	bitumen			amount to	amount of	Type of	tor		Target	
		Fen of	remixed/depth						type in	max density		-		rejuvenat		Result	70/100	
2		old	of remix	rut depth	volume of rat*	pavement/m2	Pbold	um]	admixture	of admixture	Pb ad	[kg]	refil the rut	or	[kg/M2]	V1500	RTFOT	Target
3	70/100	16	0,04	16	0,008	76,8	5,8	2400	70/100	2400	5,4	140,8	19,2	v1500	0,25	0,94357	0,94259	70/100 RTFOT
4	admixture	16	0,04	16	0,008	76,8	6	2400	70/100	2400			19,2	v1500	0,25	0,9434	0,94259	70/100 RTFOT
5		16	0,04	16	0,008	76,8	6,2	2400	70/100	2400			19,2	v1500	0,25	0,94328	0,94259	70/100 RTFOT
6		16	0,04	16	0,008	76,8	6,4	2400	70/100	2400			19,2	v1500	0,25	0,94317	0,94259	70/100 RTFOT
7		16		16	0,008	76,8	6,6		70/100	2400			-	v1500	0,25	0,94308		70/100 RTFOT
8		16		16		76,8	6,8		70/100	2400				v1500	0,25	0,943		70/100 RTFOT
9	-	16		16		76,8	7		70/100	2400			· · · · ·	v1500	0,25	0,94294	· ·	70/100 RTFOT
17	70/100	25		16	0,008	76,8	5,8		70/100	2400				v1500	0,25	0,94287		70/100 RTFOT
	admixture	25		16	0,008	76,8			70/100	2400			-	v1500	0,25	0,94303		70/100 RTFOT
19		25		16	0,008	76,8	6,2		70/100	2400				v1500	0,25	0,9432		70/100 RTFOT
20		25		16	0,008	76,8	6,4		70/100	2400	5,4		-	v1500	0,25	0,94338		70/100 RTFOT
21		25		16	0,008	76,8			70/100	2400				v1500	0,25	0,94356		70/100 RTFOT
22 23		25		16	0,008	76,8	6,8		70/100	2400				v1500	0,25	0,94275		70/100 RTFOT
		25		16	0,008	76,8	7		70/100	2400				v1500	0,25	0,9428		70/100 RTFOT
24	100/150	25		16	0,008	76,8	5,8		70/100	2400			-	v1500	0,25	0,94269		70/100 RTFOT
25	admixture	25		16	0,008	76,8			70/100	2400			· · · · ·	v1500	0,25	0,94281		70/100 RTFOT
26		25		16	0,008	76,8	6,2		70/100	2400	5,4			v1500	0,25	0,94294		70/100 RTFOT
27		25		16	0,008	76,8	6,4		70/100	2400				v1500	0,25	0,94308		70/100 RTFOT
28 29		25		16	0,008	76,8	6,6		70/100	2400	5,4		-	v1500	0,25	0,94322		70/100 RTFOT
		25		16	0,008	76,8	6,8		70/100	2400	5,4			v1500	0,25	0,94338		70/100 RTFOT
30 31	50/70	25		16		76,8	7		70/100	2400				v1500	0,25	0,94353		70/100 RTFOT
		37	0,04	16	0,008	76,8	5,8		70/100	2400				v1500	0	0,91709		70/100 RTFOT
	admixture	37	0,04	16	0,008	76,8			70/100	2400				v1500	0	0,917		70/100 RTFOT
33		37	0,04	16	0,008	76,8			70/100	2400			-	v1500	0	0,91693		70/100 RTFOT
34 35		37	0,04	16	0,008	76,8	6,4		70/100	2400				v1500	0	0,91686		70/100 RTFOT
35 36		37	0,04	16	0,008	76,8	6,6		70/100	2400			-	v1500	0	0,91679		70/100 RTFOT
		37	0,04	16	0,008	76,8			70/100	2400	5,4			v1500	0	0,91672		70/100 RTFOT
37		37	0,04	16	0,008	76,8	7	2400	70/100	2400	5,4	19.2	19,2	v1500	0	0,91666	0,94259	70/100 RTFOT

Rut refill is enough to reach target for pavements close to target

Calculations for one Penetration of bitumen in aged pavement + V1500 (density change)

		volume of					Density of										Target	
		layer to be					old	bitumen		maximum		minimum	Type of	Rejuvenator			70/100	
	Pen of	remixed/dept					pavement	type in		density of	Admixtur	admixture to	rejuvena	amount		Result	RTFOT	
2	old	h of remix	rut depth	volume of rut	effective mass	Pbold	[maximum]	admixture	Pb ad	admix	e amount	refil the rut	tor	[kg/M2]	calc pen	B800	(40Pen)	Target name
3	16	0,04	16	0,008	76,8	5,8	2400	70/100	5,4	2400	159,1016	19,2	650/899	0,25	40,46	0,943502	0,942588	70/100 RTFOT
4	16	0,04	16	0,008	76,8	6	2400	70/100	5,4	2400	165,7341	19,2	650/900	0,25	40,45	0,94346	0,942588	70/100 RTFOT
5	16	0,04	16	0,008	76,8	6,2	2400	70/100	5,4	2400	172,3636	19,2	650/900	0,25	40,45	0,943421	0,942588	70/100 RTFOT
6	16	0,04	16	0,008	76,8	6,4	2400	70/100	5,4	2400	178,9842	19,2	650/900	0,25	40,44	0,943386	0,942588	70/100 RTFOT
7	16	0,04	16	0,008	76,8	6,6	2400	70/100	5,4	2400	185,5968	19,2	650/900	0,25	40,44	0,943354	0,942588	70/100 RTFOT
8	16	0,04	16	0,008	76,8	6,8	2400	70/100	5,4	2400	192,2025	19,2	650/900	0,25	40,44	0,943325	0,942588	70/100 RTFOT
9	16	0,04	16	0,008	76,8	7	2400	70/100	5,4	2400	198,8017	19,2	650/900	0,25	40,43	0,943298	0,942588	70/100 RTFOT
31	16	0,04	16	0,008	86,4	5,8	2700	70/100	5,4	2700	183,1234	21,6	650/900	0,25	40,44	0,943365	0,942588	70/100 RTFOT
32	16	0,04	16	0,008	86,4	6	2700	70/100	5,4	2700	190,5593	2,6	650/900	0,25	40,44	0,943331	0,942588	70/100 RTFOT
33	16	0,04	16	0,008	86,4	6,2	2700	70/100	5,4	2700	197,9749	21,6	650/900	0,25	40,43	0,943302	0,942588	70/100 RTFOT
34	16	0,04	16	0,008	86,4	6,4	2700	70/100	5,4	2700	205,3952	21,6	650/900	0,25	40,43	0,943274	0,942588	70/100 RTFOT
35	16	0,04	16	0,008	86,4	6,6	2700	70/100	5,4	2700	212,8087	21,6	450/900	0,25	40,42	0,943248	0,942588	70/100 RTFOT
36	16	0,04	16	0,008	86,4	6,8	2700	70/100	5,4	2700	220,2163	21,6	650/900	0,25	40,42	0,943225	0,942588	70/100 RTFOT
37	16	0,04	16	0,008	86,4	7	2700	70/100	5,4	2700	227,6184	21,6	650,(900	0,25	40,41	0,943203	0,942588	70/100 RTFOT


Dense pavements require more admixture – because more old bitumen in same volume of 4 cm layer!


Issues with density

Effective thickness of layer (maximum density of asphalt)

Current procurement of 100 kg/m²: At 2400 kg/m³ at 2% air voids (2352 kg/m³) At 2717 kg/m³ at 2% air voids (2662 kg/m³)

2. Transfer of base courses into the wearing course due to too thin overlay (maximum density of asphalt)

Suggestions from steering board

- Learning how to use such spread sheet on workshops during spring time
- Additional information from PTM → volume of rut
 - At the moment we have depth but not width of it
 - allows to calculate the exact need for admixture
 - Allows to estimate the rejuvenator amount

School of Engineering

Test sites 2016

Participants

- 5 contractors and 5-6 roads
- 4 visits to the construction site
- 4 thermal profile follow-ups
- 1 test on homogenity due to the speed of REM (4 vs. 8 m/min)
- 1 test on use of V1500 in place of 650/900
- Different heaters (oil and gas)
- ... sampling and processing afterwards is still ongoing

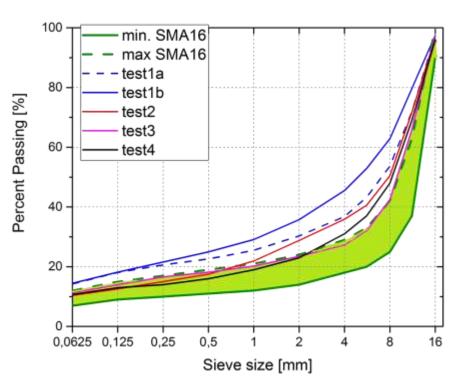
No complications were recorded during the construction with rejuvenator v1500

The bleeding was not visibly observed

It was hard to dose the rejuvenator at such small levels (40 is minimum)

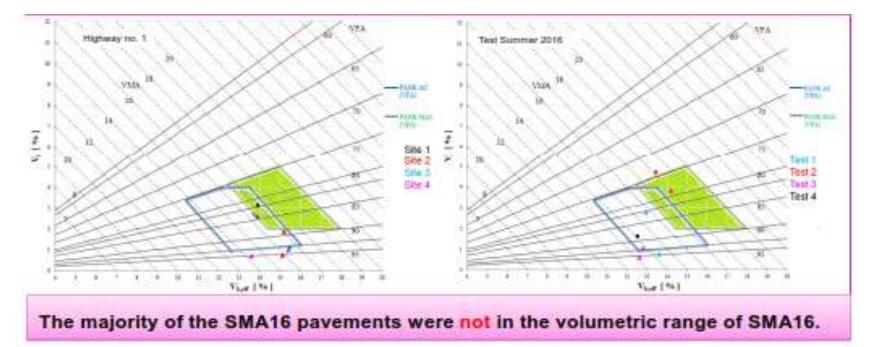
The contractor calculated that volumetrically above 130 g /m2 of rejuvenator 650/900 bleeding could be a problem

- → 65 g /m2 of V1500 would result in equiviscous bitumen but allow lower voids filled with bitumen
- \rightarrow So 65 g/m2 was set as the maximum to be used


Aggregate gradation and mineralogy

VT1 – the gradation before and after – <u>small difference</u>

- Hypothesis of REM process crushing the rocks significantly rejected
- But layer thickness was > 45 mm


Other VTs in 2016 – could not be classified as SMA

- + Layer thickness <40 mm

The volumetric range was more consistant with AC pavements than SMA

The density is variable and because of that 100 kg/m² is not 4 cm \rightarrow are we analysing the layer beneath surface?

	Test 1	Test 2	Test 3	Test 4	Test 5
Max. density	2,450	2,717	2,790	2,631	2,421

Conclusions

Simple suggestions to improve the success rates

- 1. Too many simplifications in the past
- 2. A shift from LTA(100 kg) \rightarrow LTA(4cm) is necessary
- 3. The minimum bitumen QC requirements are necessary and suggested (use either G-R parameter or Penetration)
- 4. As the infrastructure ages, the rules of rejuvenation developed for bitumen 100/150 do not apply and rules of rejuvenation and admixture amount choice are proposed
- 5. Rejuvenation target should be in line with the traffic levels of the road (e.g. low volume road should have a higher end Penetration than Highways)

Simple suggestions to improve the success rates

- 5. Use of V graded bitumens is acceptable but needs a design step and care during the construction
- 6. V grade bitumens are suggested for very aged bitumens and mixes prone to bleeding (SMA?)
- 7. Planning and execution of REM works should involve rut depth/volume analysis
- 8. Improved heating control for better rejuvenation

