Laser scanning

Mateusz Janiszewski, D.Sc. (Tech) Lauri Uotinen, D.Sc. (Tech) TERRA Remote rock mass characterization

LiDAR, Terrestial laser scanning

LIDAR – Light Detection and Ranging

Terrestrial laser scanning (TLS)

- ground-based, active imaging method that rapidly acquires accurate, dense 3D point clouds of large object surfaces by laser rangefinding (Lichti, 2011)
- **contact-free measuring devices** which run usually at fixed positions. Multiple scans are taken for covering the area of interest.

Most common laser scanners

TOF (time-of-flight)

- Measures traveling time of a laser pulse (pulse-based scanner)
- Solves traveling time from the phase difference of modulated light (phase shift scanner)

(Active) Triangulation

• e.g. Structured light systems

Mobile laser scanning

Mobile laser scanning (MLS)

Simultaneous localisation and mapping (SLAM) - complex algorithms that map an unknown environment

Other types of active imaging systems

- Structured-light systems
- Range cameras / FLASH Lidar

LiDAR sensor location on Apple iPhone Pro 12 (left) and iPad Pro 2020 devices

Manufacturers: examples

- Zoller+Fröhlich, <u>www.zf-laser.com</u>
- Leica, <u>www.leica-geosystems.com</u>
- RIEGL, <u>www.riegl.com</u>
- Trimble, <u>www.trimble.com</u>
- I-SiTE 3D, www.maptek.com
- FARO, www.faro.com
- VisImage, <u>www.vis.ca</u> (body scanner)
- Polhemus, <u>www.polhemus.com (hand-held)</u>
- Artec3D, <u>www.artec3d.com</u>
- Velodyne, velodynelidar.com
- Quanergy, <u>quanergy.com</u>
- Ouster, ouster.com

Scanning methodology

Before

Planning

- •Equipment selection
- Scan parameters
- •GNSS / total station
- Reference data
- Control measurements

Calibration

Scanner

Quality control

On-site

Control measurements

•Targets •Reference points

GNSS base station

TLS measurements

Scan stationsReference targets

Post-processing

Processing raw data

•Scan data preprocessing •Control meas. computation

Georeferencing

Target selectionComputation

Point cloud processing

FilteringProjectionsMeasurements

Error sources

- **Instrumental** (distance and angle measurement)
- **Object-related** (material, moisture, incidence)
- Environmental (atmosphere, disturbances)
- Scanning methodology related (operator, hardware, software, registration, scanning location...)

Instrumental errors

Example of scanner specs

- Laser footprint
 - **Beam size** at exit and beam divergence determine the laser footprint on target
 - Typically, 3 mm at exit + 0.25 mrad -> footprint 28 mm @100 m
- Ranging accuracy
 - TOF: How short is the emitted laser pulse and how accurately can the time be measured
 - E.g. 5 mm @ 100 m (1 standard deviation)

SYSTEM ACCURACY		
Accuracy of single measurement *		
Range accuracy	1.2 mm + 10ppm over full range (120 m / 270 m mode) 3 mm + 10ppm over full range (570 m / >1 km mode) 8" horizontal: 8" vertical	
Target acquisition **	amm standard deviation at som	
Dual-axis compensator	Liquid sensor with real-time onboard compensation, selectable on/off, resolution 1", dynamic range ±5', accuracy 1.5"	
DISTANCE MEASUREMENT SYSTE	м	
Туре	Ultra-high speed time-of-flight enhanced by Waveform Digitising (WFD) technology	
Wavelength	1550 nm (invisible) / 658 nm (visible)	
Laser class	1 (in accordance with IEC 60825:2014)	
Beam divergence	< 0.23mrad (FWHM, full angle)	
Beam diameter at front window	\$ 3.5mm (FWHM)	
Range and reflectivity	Minimum range 0.4 m	
	Maximum range mode	Reflectivity
	120 m	8%
	270 m	34%
	570 m	60%
	>1 km	80%
Scan rate	Up to 1'000'000 points per second	
Range noise *	0.4mm rms at 10m 0.5mm rms at 50m	

Slide source: GIS-E1040, Kaartinen, 2021

10

Object related errors: material

Returning signal is influenced by the reflective properties of the surface...

- Very dark and very bright surfaces cause increased noise -> ranging errors
- Specular reflection -> no returning signal
- Multipath reflection -> on transparent material the laser beam is refracted and reflected

Effect of distance, wavelength, moisture and rock type tested in laboratory (Rosnell, 2017) @ 8 m distance

- Errors caused by moisture up to 20 mm
- Error caused by **rock type** up to **4 mm**

Environmental errors

Temperature

- Sun is increasing surface temperature unevenly -> Hot surfaces may increase the noise in ranging
- e.g. frozen ground is melting under the tripod

Atmosphere

- Dust, fog, rain, smoke... anything that hinders the travel of light
- Air temperature, pressure and humidity influence the index of refraction and the speed of light
 - A difference in temperature of 10°C or in air pressure of 35 mbar -> distance error of 1 mm/100 m
 - Elevation difference: the temperature decreases 0.65°C/100 m and air pressure decreases 10 mbar/100 m. At 2000 m elevation the atmospheric parameters may lead up to 8 mm distance error at 100 m.

Methodology – operator has the strongest influence on:

- Scanner selection
- Scan station locations
- Scanner parameters
- Reference target types and locations
- Measuring the targets

