Remote rock mass characterization TERRA summer school – Module 2

Mateusz Janiszewski, D.Sc (Tech.) Lauri Uotinen, D.Sc. (Tech.)

Learning goals

By the end of the course, you will be able to:

- understand the principles and techniques of rock mass characterization, photogrammetry, and laser scanning
- plan data aqcusition and collect photogrammetric data
- process 3D models in photogrammetric software
- measure rock mass properties from 3D point clouds

Introduction

What is rock mass?

- a volume of natural rock in situ
- characterized by rock material properties and the network of discontinuities
- discontinous
- heterogeneous and anisotropic properties

Why is rock mass important in engineering?

- Rock mass characteristics heavily influence the stability and safety of engineering structures
- Understanding the rock mass helps in predicting its response to external forces (loads, stresses) and environmental conditions (water)

Characterizing the rock mass

- Rock mass characterization involves
 assessing
 - rock material

Aalto University School of Engineering

> discontinuities and their properties

https://rockmass.net/rock-properties/

• crucial in the design and implementation of safe and efficient engineering projects

Rock mass model formulation

Fracture network model

Numerical model

Discontinuities in rock masses

- Fractures in rock masses: joints, faults, shear zones, and bedding planes
- impact rock mass behavior under load and fluid flow

Traditional fracture mapping method

- Mapping exposures
- Contact method: surface measurement -> Need access to rock mass surface
- Spot vs. lineal vs. areal mapping
- e.g. scanline survey
- Major flaws: time constraint and bias

Hudson and Harrison, 1997

Aalto-yliopisto Aalto-universitetet Aalto University

What can go wrong?

Norway, 2019

- classic wedge failure
- large detachment surface
- other detachment surface is a near vertical joint
- not detected in the rock mass characterization process

Emergence of automated mapping

Past Traditional manual mapping

Current technology enables remote rock mass characterization

laser scanning) 3D data processing

Remote sensing methods

"Detection and monitoring of the physical characteristics of an area by measuring its reflected and emitted radiation at a distance" USGS

Structure from Motion (SfM) photogrammetry

Image acquisition

SfM algorithm

Digital surface model

Slope characterization example

Stead, et al., 2019. Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned. ISPRS Int. J. Geo-Inf., 8, 296.

Stope mapping example

Stope scanning

- Restricted access to dangerous areas
- CMS unable to provide accurate measurement of all surfaces
- UAV scanning as a viable and safe method for restricted areas

UAVs are now ready to be used underground

AUTONOMOUS REMOTE MAPPING

SAFETY FLEXIBILITY

CONFINED SPACE ACCESSIBILITY

Source: www.emesent.io

Source: <u>www.lnkonova.se</u>

Source: www.flyability.com

Stope mapping with a drone

- Golden Sunlight Mine in Montana, USA (Barrick Gold Corp.)
- Open dataset <u>https://info.flyability.com/photogram</u> <u>metry-dataset</u>
- Stope dim. 10 x 30 x 100 m
- 4 flights (~35 min total flight time)
- 4K ultra high definition movie -> 2105 frames extracted

Source: https://youtu.be/e8UVLwRfRdg

Images were processed to reconstruct the stope model

Point cloud

Textured mesh

Textured stope model enables revisitng for remote inspection and visualisation

Discontinuity extracted semi-automatically

Mapping results

- point density of 33.1 points per cm²
- semi-automatic method: discontinuity set extractor software ->4 discontinuity sets extracted

Remote rock mass characterization

- remote sensing technologies: LiDAR and photogrammetry
- high-resolution, accurate 3D models of rock mass surfaces
- enable detailed analysis of discontinuities -> orientation and other geometrical properties
- analyze rock mass features over large areas
- stastistical distribution of parameters
- provides unbiased data from inaccessible or dangerous locations

