Exam Solutions

1. (a) The series is a convergent geometric series and

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{4^{k+1}}{5^{k-1}} & =\sum_{k=0}^{\infty}(4 \cdot 5)\left(\frac{4}{5}\right)^{k}=\sum_{k=0}^{\infty} 20\left(\frac{4}{5}\right)^{k} \\
& =\frac{20}{1-\frac{4}{5}}=5 \cdot 20=100
\end{aligned}
$$

(b) Let $a_{k}=\frac{k}{7^{k}}$. Applying the ratio test we find that

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left|\frac{a_{k+1}}{a_{k}}\right| & =\lim _{k \rightarrow \infty}\left|\frac{\frac{k+1}{7^{k+1}}}{\frac{k}{7^{k}}}\right|=\lim _{k \rightarrow \infty}\left|\frac{7^{k}(k+1)}{7^{k+1} k}\right| \\
& =\lim _{k \rightarrow \infty} \frac{1}{7} \cdot \frac{k+1}{k}=\frac{1}{7} .
\end{aligned}
$$

Thus the series is convergent for $|x|<7$.
Furthermore, as the ratio test does not tell us anything about the convergence at the endpoints where $|x|=7$ we must check them separately:

- When $x=7$ we find that

$$
\sum_{k=1}^{\infty} \frac{k}{7^{k}} x^{k}=\sum_{k=1}^{\infty} \frac{k}{7^{k}} 7^{k}=\sum_{k=1}^{\infty} k
$$

which is clearly divergent.

- Likewise, when $x=-7$ we get

$$
\sum_{k=1}^{\infty} \frac{k}{7^{k}} x^{k}=\sum_{k=1}^{\infty} \frac{k}{7^{k}}(-7)^{k}=\sum_{k=1}^{\infty}(-1)^{k} k
$$

which also obviously diverges.
Thus we conclude that the series converges when $-7<x<7$ and diverges otherwise.
2. (a) The 3rd degree Maclaurin polynomial for the sine function is

$$
P_{3}(x)=x-\frac{x^{3}}{3!}=x-\frac{x^{3}}{6}
$$

and the 2nd degree Maclaurin polynomial for the cosine function is

$$
P_{2}(x)=1+\frac{x^{2}}{2!}=1-\frac{x^{2}}{2} .
$$

Thus this gives us the approximation

$$
\cos (\sin (0.1))=1-\frac{1}{2}\left(0.1-\frac{(0.1)^{3}}{6}\right)^{2}=0.99501665 \ldots
$$

For comparison the exact value is $0.99502078 \ldots$
(b) First we note that

$$
\lim _{x \rightarrow 0}\left(e^{a x}-1+x^{2}\right)=1-1+0=0
$$

and

$$
\lim _{x \rightarrow 0} \ln (1+2 a x)=\ln (1+0)=\ln 1=0 .
$$

Since a direct substitution would lead to an indeterminate form " $0 / 0$ " we may apply L'Hospital's rule to determine the limit.
The derivative of the numerator is

$$
\frac{d}{d x}\left(e^{a x}-1+x^{2}\right)=a e^{a x}+2 x
$$

and the derivative of the denominator is

$$
\frac{d}{d x} \ln (1+2 a x)=\frac{2 a}{1+2 x}
$$

So supposing that $a \neq 0$ we find that the limit is

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{e^{a x}-1+x^{2}}{\ln (1+2 a x)}=\lim _{x \rightarrow 0} \frac{a e^{a x}+2 x}{\frac{2 a}{1+2 x}} \\
& =\lim _{x \rightarrow 0} \frac{\left(a e^{a x}+2 x\right)(1+2 x)}{2 a} \\
& =\frac{\left(a e^{0 \cdot x}+2 \cdot 0\right)(1+2 \cdot 0)}{2 a}=\frac{a}{2 a}=\frac{1}{2}
\end{aligned}
$$

and conclude that the limit does indeed not depend on the value of the parameter a.
3. (a) As $x^{4} \geq 0$ for all $x \in \mathbf{R}$ it follows that

$$
f^{\prime}(x)=3+20 x^{4} \geq 3+0=3>0
$$

for all $x \in \mathbf{R}$ and hence the function f is strictly increasing.
(b) First we notice that

$$
f(1)=3 \cdot 1+4 \cdot 1^{5}=7 \Leftrightarrow f^{-1}(7)=1
$$

and so

$$
\left(f^{-1}\right)^{\prime}(7)=\frac{1}{f^{\prime}\left(f^{-1}(7)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{3+20 \cdot 1^{4}}=\frac{1}{23} .
$$

4. First, let $x=t^{2}$. It follows that $d x=2 t d t$ and for $x \geq 0$ we find that

$$
t=\sqrt{x} \Rightarrow \begin{cases}x \rightarrow 0 & \Rightarrow t \rightarrow 0 \\ x \rightarrow \infty & \Rightarrow t \rightarrow \infty\end{cases}
$$

Hence the substitution transforms the integral as

$$
\int_{0}^{\infty} e^{-\sqrt{x}} d x=\int_{0}^{\infty} e^{-t}(2 t) d t
$$

Next, let $f^{\prime}(t)=e^{-t}$ and $g(t)=2 t$. Applying Integration by Parts we get

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-t}(2 t) d t=\int_{0}^{\infty} f^{\prime}(t) g(t) d t \\
& =\lim _{a \rightarrow \infty} f(a) g(a)-f(0) g(0)-\int_{0}^{\infty} \underbrace{f(t) g^{\prime}(t)}_{=-2 e^{-t}} d t \\
& =\underbrace{\lim _{a \rightarrow \infty}\left(2 a \cdot\left(-e^{-a}\right)\right)}_{=0}-\underbrace{\left(2 \cdot 0 \cdot\left(-e^{-0}\right)\right)}_{=0}+\int_{0}^{\infty} 2 e^{-t} d t \\
& =\underbrace{\lim _{a \rightarrow \infty}\left(-2 e^{-a}\right)}_{=0}-\underbrace{\left(-2 e^{-0}\right)}_{=-2}=2 .
\end{aligned}
$$

Thus

$$
\int_{0}^{\infty} e^{-\sqrt{x}} d x=2
$$

5. (a) From the course materials we know (or e.g. solving by separation of variables) that

$$
y^{\prime}=k y \Rightarrow y(t)=C e^{k t} .
$$

Here the value of the constant C is determined by the initial condition $y(0)=100$ as

$$
y(0)=C e^{k \cdot 0}=C=100
$$

It then follows from the second condition $y(2)=10^{8}$ that

$$
\begin{aligned}
y(2) & =100 e^{2 k}=10^{8} \Rightarrow e^{2 k}=10^{6} \\
& \Rightarrow k=\frac{1}{2} \ln 10^{6}=3 \ln 10 .
\end{aligned}
$$

(b) Using separation of variables we find that

$$
\begin{aligned}
& y^{\prime}=1-y \\
\Rightarrow & \frac{d y}{d x}=-(y-1) \\
\Rightarrow & \int_{3}^{y} \frac{d y}{y-1}=\int_{0}^{x}-1 d x \\
\Rightarrow & \ln (y-1)-\ln (3-1)=-x-(-0) \\
\Rightarrow & \ln (y-1)=\ln 2-x \\
\Rightarrow & y(x)=1+e^{\ln 2-x}=1+2 e^{-x} .
\end{aligned}
$$

6. Let us first consider the corresponding homogeneous equation

$$
y^{\prime \prime}+6 y^{\prime}+5 y=0 .
$$

The corresponding characteristic equation is

$$
r^{2}+6 r+5=(r+5)(r+1)=0
$$

and so the roots are $r_{1}=-5$ and $r_{2}=-1$. Thus the general solution to the homogeneous equation is of the form

$$
y(x)=C_{1} e^{r_{1}}+C_{2} e^{r_{2}}=C_{1} e^{-5 x}+C_{2} e^{-x} .
$$

For a particular solution we try

$$
\begin{aligned}
y_{0}(x) & =A \cos (2 x)+B \sin (2 x) \\
\Rightarrow y_{0}^{\prime}(x) & =2(-A \sin (2 x)+B \cos (2 x)) \\
\Rightarrow y_{0}^{\prime \prime}(x) & =-4(A \cos (2 x)+4 B \sin (2 x))
\end{aligned}
$$

Substituting in the original nonhomogeneous equation and collecting the common factors yields

$$
\begin{aligned}
& y_{0}^{\prime \prime}(x)+6 y_{0}^{\prime}(x)+5 y_{0}(x)=145 \sin (2 x) \\
\Rightarrow & A \cos (2 x)+B \sin (2 x)+12 B \cos (2 x)-12 A \sin (2 x)=145 \sin (2 x) \\
\Rightarrow & (A+12 B) \cos (2 x)+(B-12 A) \sin (2 x)=145 \sin (2 x)
\end{aligned}
$$

For all $x \in \mathbf{R}$ this equation is satisfied only if

$$
\begin{cases}A+12 B & =0 \\ B-12 A & =145\end{cases}
$$

This solves to $A=-12$ and $B=1$. So a particular solution to the nonhomogeneous equation is

$$
y_{0}(x)=-12 \cos (2 x)+\sin (2 x) .
$$

From the results above it follows that the general solution to the nonhomogeneous equation is

$$
\begin{aligned}
y(x) & =C_{1} e^{-5 x}+C_{2} e^{-x}+y_{0}(x) \\
& =C_{1} e^{-5 x}+C_{2} e^{-x}-12 \cos (2 x)+\sin (2 x) .
\end{aligned}
$$

